CSU Bathurst Electrification Roadmap

Energy Overview

Energy Baseline

Bathurst - Energy Consumption Baseline

Utility	Annual Consumption	Annual Cost		
Electricity – Grid	3,312 MWh	\$748,634		
Electricity – Solar	1,358 MWh	N/A		
Natural Gas	49,050 GJ	\$ 1,352,229		

Bathurst - Energy Consumption by Month

Bathurst campus currently relies heavily on natural gas due to the following factors:

- · Bathurst's cold-climate results in a significant heat load across ~8 months of the year
- The campus's infrastructure was originally designed to be heated using natural gas

Bathurst - Energy consumption breakdown

Energy infrastructure limitations

Bathurst – Energy Infrastructure limitations

Utility	Supply type	Maximum Supply Available	Maximum Demand (last 3 years)	Demand Available	Comment
Electricity	11kV High-voltage ringmain	2.4MVA (Essential energy connected services agreement)	1.7MVA	~0.7MVA	Site max demand is dynamic due to onsite generation from solar PV and cogeneration systems. A formal review of maximum site demand including the impact of solar PV and cogeneration should be undertaken.
Natural Gas	1 x large supply meter (97%) 1 x small meter (3%)	TBC – at	limit	Minimal – site experiences pressure drops at times of peak consumption	The site has experienced pilot lights going out in gas using equipment due to pressure drops in the system associated with limited supply. There is no available gas supply available through the current meter.

Electrification Roadmap

Electrification Roadmap Overview

Stage 1: Planning and enablers

- 1. Develop and track gas consumption baseline
- 2. Map out equipment end of life & schedule upgrades
- 3. Develop equipment replacement standards for minor gas using equipment
- 4. Improve BMS functionality

Stage 2: Load reduction and efficiency

- 5. Reduce campus' gas load
- 6. Increase existing equipment efficiencies
 - 7. Review energy use and baseline

Stage 3: Electrification

- 8. Electrification pilots
 - 9. Plan and undertake HV upgrade

10. Broader electrification of key assetsStage 4: Future projects11. Decommission central energy12. Solar installations to offset additional
electricity consumption13. Consider future electrification projects

CAL24	CAL25	CAL26	CAL27 onwards
-------	-------	-------	---------------

Stage 1: Planning and enablers

#	Activities	How	When	Who
1	Develop and track gas consumption baseline	 Implement gas consumption baseline to understand site performance year-on-year and compare to other sites. Track gas consumption by month to assess change in performance between years. 	Jan – Feb (2024)	
2	Map out equipment end of life & schedule upgrades	 Identify equipment scheduled for immediate replacement or nearing end-of-life. Develop a ranked list of gas equipment needing replacement in the next 12-months. 	Feb – Mar (2024)	Maintenance & Facilities
3	Develop equipment replacement standards for minor gas using equipment	• Set up minimum allowable spec for new equipment to ensure it aligns with all future upgrade plans (no gas, etc.). I.e. electric alternatives to existing minor gas users.	Feb – Mar (2024)	
4	Improve BMS functionality	 Improve BMS functionality to connect to all buildings, capable machinery and the logging of critical parameters, namely HVAC scheduling and status data (to track time of use information and behaviour) 	Apr – Jun (2024)	Energy Management

Stage 2: Load reduction opportunities

Improved HVAC scheduling There is an opportunity to implement automated HVAC on/off scheduling for packaged and central HVAC systems across the campus.

An example opportunity includes McDonoughs. This building is a major gas user and has a BMS system, but no scheduling or control has been implemented.

Est. Saving: 10-20% of space heating gas use

McDonoughs – Uncommissioned BMS

Example of optimised dead band

Staff and student engagement program

During the site visit, 2XE observed many areas being heated or cooled without any staff present, and very high or low temperature setpoints. Improved Staff and student engagement has the potential to produce significant savings via reduced equipment time-of-use.

Universal remote for split systems

Stage 2: Load reduction and efficiency

#	Activities	How	When	Who	Estimated CAPEX	Cost saving	Gas Reduction (%)
5	Reduce campus' gas and electrical load	 Improved HVAC Scheduling: Develop a register of HVAC scheduling by building and whether it is controlled manually or automatically. Systematically implement automatic scheduling where possible. Improved HVAC & boiler control: Where possible implement the following control improvements: Temperature limits for heating and cooling Optimised temperature dead bands Optimised heating / cooling call lockout Chilled and hot water temperature resets Boiler sequence control Staff and student engagement program: Where automatic scheduling of HVAC is not possible, engage with staff in each building to optimize time-of-use, using 	Jul – Dec (2024) Jul – Oct (2024)		In-kind	\$144,000	9.4%
6	Increase existing equipment operating efficiency	posters as reminders where necessary. General cleaning of evaporator & condenser fins - Opportunity to improve the airflow and efficiency of existing units by incorporating filter / fin cleaning into standard maintenance. Regular servicing of equipment: • Check calibration of thermostats • Check combustion efficiency of major boilers (flue gas analysis) • Check burner, blower fan and air filters • Check for leaks or damages to insulation	Ongoing		In-kind	\$17,000	1.2%
7	Establish new baseline	 Ensure all strainers, filters, oils, etc. are changed regularly to ensure optimal performance. Revise gas consumption baseline to assess the impact of changes 	Jan 2025			n/a	

Stage 3: Electrification

		JOV Satellite plant electrification: Implement a central air-sourced CO2 heat pump solution to supply JOV with	
		domestic hot water	
8 Elec		Macquarie Village electrification: Test the use of small-scale heat pumps for domestic hot water and air-sourced hydronic heat pumps to supply radiator systems at Macquarie village	Jan 2025 – Jun 2026
		Windradyne / Diggings electrification: Test the use of small-scale heat pumps for domestic hot water, and the transition from hydronic radiators to refrigerated space heating (using multi-head split systems)	
9 Plai	lan and undertake major HV	Work with Boschetti to scope out required HV and LV electrical upgrades	Jul 2025 – Dec 2026
⁹ upg	pgrade	Undertake HV and LV upgrades	Jul 2025 – Dec 2026
10	roader electrification of key ssets	• Proceed with the electrification of key gas users: First focusing on central energy connected systems to enable the decommissioning of central energy.	2027 onwards

Stage 4: Future projects

#	Activities	How	When
11	Decommission central energy	Confirm that all downstream demands have been de-coupled from existing central energy plant and proceed with decommissioning.	2027
12	Solar installations to offset additional electricity consumption	Using metered data from the electrification pilots, install necessary solar PV to offset the additional consumption and demand associated with electrified systems. Significant opportunity to reduce load by charging hot water buffers during the day.	2027 onwards
13	Consider future electrification projects	• Consider future electrification projects such as induction cooktops in kitchens, ground sourced heat pumps for hot water, high-temperature energy storage systems, etc.	2027 onwards

Electrification Analysis

Priority Areas

Two priority areas were identified to develop indicative business cases for a variety of electrification scenarios for the campus. The age and condition of the sites central energy system has resulted in it being flagged as a high priority. Additionally, student accommodation is critical to campus financial performance and as such ensuring cost-effective delivery of hot water is a high priority.

Central Energy

Decoupling downstream demands by utilising heat pumps with storage. Downstream demands include:

- JOV
- Sheila Swain Building
- Mason Building
- Mansfield
- The Diggings

End goal to decommission central energy

Student Accommodation

Student accommodation direct gas users include:

- Macquarie Village
- Windradyne
- The Diggings (direct gas supplied)
- JOV (already addressed)

Central Energy – Downstream de-coupling 2%E **Business Cases**

Bathurst – Central Energy – Downstream electrification business cases (examples in appendix)

Area / Building	Existing equipment	Proposed Equipment	Confidence level	HHW energy reduction (GJ p.a.)	Electrical gain (MWh p.a.)	Additional max electrical demand (kVA)	CAPEX (\$ ex GST)	Cost saving	Payback period
John Oxley	Domestic Hot water - Ring Main HX	2 x 76kW CO2 heat pumps (air sourced)	High	808	62	87	\$525,000	\$9,928	N/A
Village	Space Heating - HX to hydronic radiator loop	Mitsubishi Heavy Industry units modelled	High	2,919	225	376	\$1,170,000	\$28,472	N/A
	Domestic Hot water - Ring Main HX	2 x 76kW CO2 heat pumps (air sourced)	Medium	945	73	87	\$525,000	\$13,416	N/A
Mansfield (1411)	Space Heating - Ducted - Evap. W. HHW Coil	TBC - no heat meter data or specs available for coils	Low	1,060	82	212	\$675,000	\$1,182	N/A
	Space Heating - HX to hydronic radiator loop	Mitsubishi Heavy Industry units modelled	Low	331	26	118	\$250,000	-\$5,987	N/A
Mason	Domestic Hot water - Ring Main HX	2 x 76kW CO2 heat pumps (air sourced)	High	1,163	90	87	\$525,000	\$18,924	27.7 years
(1414)	Space Heating - Ducted - Evap. W. HHW Coil	TBC - no heat meter data or specs available for coils	Low	706	55	141	\$450,000	\$788	N/A
Sheila Swain (1293)	Space Heating - HX to act as evap coil for heating loop	Revere AHGR32AW150	Medium	1,944	150	78	\$225,000	\$39,863	5.6 years
The Diagingo	Ring Main HX	2 x 76kW CO2 heat pumps (air sourced)	High	825	64	87	\$525,000	\$10,356	N/A
The Diggings	Space Heating - HX to hydronic radiator loop	Mitsubishi Heavy Industry units modelled	High	2,065	159	243	\$544,000	\$22,902	23.8 years
			TOTAL	12,766 GJ	986 MWh	1,515 kVA	\$5,414,000	\$139,844	N/A

Student Accommodation – Electrification 21/2 **Business Cases**

Bathurst – Student accommodation – Electrification business cases (details in appendix)

Area / Building	System	Proposed Equipment	Confidenc e level	Gas reduction (GJ p.a.	Electrical gain (MWh p.a.)	Additional max electrical demand (kVA)	CAPEX (\$ ex GST)	Cost saving	Payback period	Like-for-like replacement CAPEX (i.e. gas replacement) (\$ ex GST)	Payback period when considering like- for like cost
Macquarie	Hot water - Storage - Gas	Bank of 4 residential scale CO2 heat pumps + optional electric finishing tank	High	1,477	117	124	\$350,000	\$13,672	25.6	\$100,000	18.3
Village	Space heating - Hydronic - Gas	Air-sourced CO2 heat pump - 1 x AHGR32AW120	Moderate	2,978	236	600	\$1,500,000	\$6,999	N/A	\$120,000	N/A
The Diggings	Hot water - Storage - Gas	Bank of 2 residential scale CO2 heat pumps + storage	High	633	50	47	\$140,000	\$6,605	21.2	\$57,600	12.5
The Diggings	Space heating - Ducted - Gas	Mitsubishi Heavy Industry units modelled	High	549	44	147	\$366,118	-\$7,130	N/A	\$40,000	N/A
	Hot water - Storage - Gas	Bank of 2 residential scale CO2 heat pumps + storage	High	319	25	71	\$205,000	-\$2,355	N/A	\$37,500	N/A
Windradyne	Space heating - Ducted - Gas	Mitsubishi Heavy Industry units modelled	High	762	60	202	\$503,412	-\$9,669	N/A	\$55,000	N/A
	Kitchen - Gas Cook Top	6.6kW total electric stove	Medium	20	6	73	\$44,000	-\$4,623	N/A	\$13,200	N/A
			6,739 GJ	539 MWh	1,263 kVA	\$3,108,530	\$3,497	N/A	\$423,300	N/A	

Note:

CAPEX is based upon quoted hardware costs + contingency factor for install & LV electrical upgrades (generally 50% - based on costs from JOV project)
 Cost saving is heavily dependent on the increase in maximum demand caused by new equipment. An annual diversity factor of 50% was used p.a. across peak, shoulder and off-peak demand. If a diversity factor of 80% is used, total cost savings drop to only ~\$10k p.a.
 Demand and load management of implemented systems will be key to cost effective operation.
 No allowance for HV upgrades included in CAPEX

Remaining campus electrical impact

Estimated additional demands associated with the electrification of other non-priority gas users

Bathurst - Remaining campus - Electrification impact

Category	Replacement type	Est. additional connected demand (kVA)
Boilers	Heat pump	1,811
Equipment	Direct	23
Hot water	Heat pump	548
Kitchen	Direct	558
Space heating	Heat pump	1,811
	Grand Total	4,751 kVA

Electrification impact

Bathurst – Electrification impact – Whole campus

Category	Est. additional connected demand (kVA)	Potential diversity factor	Est. impact on total site max demand
Central Energy	1,515 kVA		758 kVA
Student Accommodation	1,263 kVA	50%	632 kVA
Remaining Campus	4,751 kVA		2,376 kVA
Grand Total	+7,529 kVA		+3,765 kVA

Transformer capacity check (LV)

				No Diversity (as connected lo			nagement of connected)		
Area / Building	Supply transformer	Transformer Capacity (kVA)	Max Read (kW) (last 3 years)	Available capacity	Additional load	Remaining load	Additional load	Remaining load	
Macquarie Village	S10375	315	64	244	289	-45	362	-118	
The Diggings	S255	500	82	409	524	-114	262	147	
Windradyne	S60057	300	N/A			TBC			
John Oxley Village	S218	315	75	232	463	-231	231	0	
Mansfield	S250 (Lecture	500			416		208		
Sheila Swain	complex)	500	TE	3C	78	TBC	39	TBC	
Mason	S121 (boiler house)	750			228		114		

Note:

• While electrical demand data was available for some transformers, it wasn't available for all, it is recommended that additional metering is put in place to understand the maximum demand experienced by each transformer.

Electrification Feasibility Summary

The below table summaries key feasibility considerations for electrification of CSU Bathurst Campus

Component	Student Accommodation	Student Accommodation Central Energy Remaining Campus		Total site		
Equipment (technical feasibility)	High: Suitable heat pump alternatives available for both hot water and space heating requirements. CO2 heat pumps are recommended for their low ambient operating temperature		Moderate: Electric alternatives are available for essentially all gas equipment utilized by CSU	Moderate to High		
Electrical infrastructure: Low- Voltage	The shift from central hydronic heating loops to the systems) comes with a significant inc In many cases this will require upgrades to cabling	ires investment): preferred refrigerated space heating / cooling (split rease in connected electrical demand. to each building to increase capacity, and in other a buildings distribution board.	Low – Moderate: It is clear that significant upgrades to LV electrical infrastructure will be required. Significant problem areas include site kitchens due to the need for a 1-to-1 switch between gas and electric capacities	Moderate (requires investment)		
Electrical infrastructure: High-Voltage	infrastructure: upgrade will be required.					
Electrical Supply: Connected services agreement	Estimated campus additional connected					
Note:	ated with equipment herdware installation	and LV electrical infrastructure ungrades have	a been accounted for in provinue business			

• The cost associated with equipment hardware, installation and LV electrical infrastructure upgrades have been accounted for in previous business cases.

• Previous business cases do not include costs associated with any upgrades to high-voltage electrical infrastructure across the site.

APPENDIX

APPENDIX: Natural Gas Overview

Natural Gas Baseline (May 22 – Apr 23) 21/2

CSU Bathurst – Natural gas use by supply

CSU Bathurst – Natural gas baseline (May-22 – Apr-23)

	Cons	sumption and	cost	GHG Emissions (tCO ₂ -e)		
Source	Consumption (GJ)	Cost (\$ p.a.)	Average price	Scope 1	Scope 3	Total
Small Supply	1,284	\$17,240	\$13.42	66	18	84
Main Supply	47,766	\$1,334,989	\$27.95	2,461	669	3,130
Total	49,050 GJ	\$1,352,229		2,528 tCO ₂ -e	687 tCO ₂ -е	3,214 tCO ₂ -e

Natural Gas Consumption Profile (May 22 – Apr 23)

Key observations:

- Gas use is highest in winter and lowest in summer, aligning with seasonal temperature fluctuations
- Monthly gas consumption was in highest in Jul-22 at ~8,000GJ
- Natural gas prices increased significantly in Jan-23

Where is natural gas used?

CSU Bathurst – Natural gas use summary

Natural gas distribution map

CSU Bathurst - Natural gas infrastructure map

Where is central hot water used?

Where is central hot water used?

Central energy hot water infrastructure

CSU Bathurst - Central energy hot water infrastructure map

APPENDIX: Gas & Heat Mapping

Estimated natural gas use breakdown by 2%E

CSU Bathurst - Estimated natural gas breakdown by equipment

Equipment	Description	Consumption (GJ p.a.)	% of site
Central Boilers	Central energy hot water boilers - 2 x 2.4MW	5,786	11%
CoGen	Central energy gas fired cogeneration plant	20,578	38%
Space Heating	Direct space heating equipment, i.e. ducted gas heaters & flued gas heaters	12,321	23%
Kitchen	Kitchen cooking equipment including gas stoves, grills, ovens & deep fryers	1,496	3%
Equipment	Laundry equipment, bunsen burners, etc.	226	0%
Social	Gas BBQs	37	0%
Hot water	Domestic hot water equipment, i.e. continuous and storage gas hot water units	6,293	12%
Boilers	Individual building Heating Hot Water (HHW) boilers	6,923	13%
	Estimated Total	53,660 GJ	100%
	Billed total	49,050 GJ	
	Difference to billed total	4,610 GJ	9%

Summary - Natural Gas Sankey Diagram 21

Note: main incoming gas listed as 48,600 GJ, rather than billed value of 49,050GJ, as this is a calculated load profile

Central Energy CoGen & Boiler Observations

GoGen Notes:

- Gas rating:
- Gas consumption:
- Electrical output:
- Captured electrical energy:
- Rated thermal output:
- Captured thermal energy:
- Total heat loss (Flue + Cooling Tower):
- 10.7 GJ/hr 15,433 GJ 635kW @ 42.6% efficiency 8,766 GJ 682kW @ 45.7% efficiency 4,484GJ
- 7,328 GJ (35.6% of total)

Central energy cogen

Central energy boilers

- Duty: Assumed 7 months of operation at 75% duty, 12hrs per day, based on scheduling for 2024
- Large portion of heat recovery lost, capacity can't be absorbed by existing demand & storage systems
- Excess heat is dissipated through air cooled cooling towers on plant roof

Central Boiler Notes:

- Duty: Assumed 9 months of operation consistent use schedule
- Very low duty, 5% of available capacity over 9-month period
- Good case for resizing systems and replacement with heat pump technology
- Decentralisation of buildings plausible to eliminate losses in pipe runs

Estimated natural gas breakdown by end-use

Consumption % of Description End-use (GJ p.a.) site Energy used to heat spaces either directly or indirectly (via secondary Space Heating 28,269 53% HHW loops) Domestic hot water used in 9,912 Hot water accommodation, kitchens, 18% bathrooms and other amenities Kitchen cooking equipment including gas stoves, grills, ovens & deep **Kitchen** 1,496 3% fryers Laundry equipment, bunsen burners, 226 Equipment 0% etc. Gas BBQs 37 0% Social Electricity generated via the Electricty 8,766 16% cogeneration plant Losses in energy due to equipment inefficiencies, i.e. inability to capture 9% Losses 4,953 waste heat from the cogen plant & boiler efficiency losses Estimated Total 53,660 GJ 100%

2XE

CSU Bathurst - Estimated natural gas breakdown by end-use

Natural gas use breakdown by building 21/2

CSU Bathurst - Estimated natural gas breakdown by building

Central Energy Hot water use summary

CSU Bathurst – Estimated hydronic heating by end-use

Building	Annual heat use (GJ p.a.)	% of total
1346 - John Oxley Village	3,606	29%
1293 - Sheila Swain Building	1,944	15%
1414 - Mason Building	1,869	15%
1411 - Mansfield	2,336	18%
1255 - The Diggings	2,889	23%

Data sources and accuracy

Data source	Description	Accuracy
Utility gas billing data: (Main supply & small supply)	Gas billing data was used as the 'single source of truth' for total site natural gas consumption.	Very High
Gas sub-meters	Gas sub-meter data, where available, was used as the 'single source of truth' for the gas using equipment downstream of the meter (on a per building basis). Gas sub-meters captured 32% of total billed gas use during the analysis period.	High
Hydronic heat meters	Several of the downstream domestic hot water and space heating heat exchangers connected to the central hydronic system have heat meters installed. Heat meter historical data for the last 5-years was able to be accessed via the BMS, interval meter / trend data was available for the previous 3-6 months depending on the meter.	High
Equipment ratings and time-of-use	During the site visit, 2XE captured available gas equipment nameplate data. This data was combined with estimated equipment time of use, based on equipment and building type, to estimate annual gas consumption for the equipment.	Medium
BMS	The BMS was used for instantaneous readings of heat meters, and understanding equipment layout and function for each connected building. 2XE assessed the potential of historical gas meter and heat meter readings but there were significant inconsistencies in the observed data and as such it was not used more extensively for the analysis.	-

APPENDIX: Opportunity Assessment Details

Confidence level legend

Confidence level	Data available for analysis
High	 Energy use data available either via the BMS or physical gas meters Indicative quotes received for equipment / hardware Estimate costs for electrical and civil / structural upgrades based on previous projects / discussions with contractors
Medium	 Minimal to no energy usage data available for the equipment Nameplates and specifications available for existing equipment Indicative quotes for equipment / hardware
Low	 No energy use data available for the equipment No documentation or nameplates available to determine existing equipment capacity High-level Capex estimates

Macquarie Village (10%) - Overview

Space heating Notes:

- Underfloor gas heating is significantly undersized for 9/10 buildings.
- Current unit capacity of ~40kW is not fit for purpose and a heating capacity of ~80kW is required.
- A replacement has been designed to meet the heat required of 80kW per building.

Macquarie Village - Gas hot water system

Macquarie Village - Gas hydronic heating system

2 X E

Macquarie Village – Solution Options

		Hot water solutions			Space heating	solution
Solution overview		Install a bank of 4 x ~3.5kW w/ 400L buffer residential hot water heat pumps or larger skid mounted heat pump system			Install large 120kW air sourced heat pump for hydronic heating water. 1 x AHGR32AW120	
		Value	Unit		Value	Unit
Per building	Heat Capacity (Standard conditions)	14	kW		120 (90 at -7C)	kW
	Buffer storage	1,600	L		200	L
	Additional elec. Demand	94	kVA		156	kVA
Business	Estimated CAPEX	\$350k			\$1,500k	
Case	Gas use saving	1,477	GJ p.a.		2,978	GJ p.a.
(Precinct	Additional Elec. Use	117	MWh p.a.		236	MWh p.a.
wide)	Est. Cost Savings	\$13k	p.a.		\$31.5	p.a.
	Payback period	27	years		12	years

Reclaim hot water heat pump manifold

Combined solution

Potential solution: Option to install a single heat pump that delivers heat for both Domestic hot water and hydronic heating.

CAPEX: ~\$2m

1 x Revere CO2 76kW Heat Pump w/ 2 x 500L DHW tanks (1,000L) & 1 x 800L HHW buffer tank (\$110k/skid) 40

Windradyne - Overview

		Value	Unit
	Number of buildings	11	Buildings
	Residents per building	8	Residents
	Showers per building	2	showers
	Туре	Gas storage	
Hot water	Model	TBC	
system (per building)	Capacity	~40	kW (TBC)
is an an ig)	Storage volume	260	L
Space Heating System (per building)	Туре	Gas ducted heating	
	Model	Brivis Upflow 92	
	Capacity	25	kW
bunding)	Storage volume	n/a	
Precinct	Estimated natural gas use	3,025	GJ p.a.
Total	% of natural gas use	6.2	%

Windradyne – Gas storage system

Windradyne – Ducted gas heating system

41

Windradyne – Solution Options

		Hot water se	olutions	Space heating	solution
Solution overview		Install a bank of 2 x residential hot water heat pumps or larger skid mounted heat pump system		Install reverse cycle air conditioners fo	
		Value	Unit	Value	Unit
Per building	Heat Capacity (Standard conditions)	7	kW	~30	kW
	Buffer storage	800	L	N/A	
	Additional elec. Demand	61	kVA	97	kVA
Business	Estimated CAPEX	\$165k		\$450k	
Case	Gas use saving	1,100	GJ p.a.	1,270	GJ p.a.
(Precinct	Additional Elec. Use	87	MWh p.a.	101	MWh p.a.
wide)	Est. Cost Savings	\$11k	p.a.	\$8.3k	p.a.
	Payback period	15	years	50+	years

Reclaim hot water heat pump manifold

Reverse Cycle Air Conditioning

The Diggings – Gas Connected Overview 21/E

		Value	Unit
	Number of buildings	8	Buildings
	Residents per building	8	Residents
	Showers per building	2	showers
Hot water	Туре	Gas storage	
	Model	TBC	
system (per building)	Capacity	~40	kW (TBC)
bulluling)	Storage volume	260	L
Space	Tupo	Gas ducted	
Heating	Туре	neating	
System (per	Model	Brivis Upflow 92	
	Capacity	25	kW
building)	Storage volume	n/a	
Precinct	Estimated natural gas use	1,436	GJ p.a.
Total	% of natural gas use	3.0	%

Diggings - Gas hot water system

Diggings – ducted gas heating system

Diggings – Solution Options

		Hot water s	olutions	Space heating	solution
Solution overview		Install a bank of 2 hot water heat pu skid mounted heat	imps or larger	Install reverse cycle air conditioners for	
		Value	Unit	Value	Unit
Per building	Heat Capacity (Standard conditions)	7	kW	~30	kW
	Buffer storage	800	L	N/A	
	Conencted elec. Demand	45	kVA	140	kVA
Business	Estimated CAPEX	\$120k		\$450k	
Case	Gas use saving	632.8	GJ p.a.	549	GJ p.a.
(Precinct	Additional Elec. Use	50.2	MWh p.a.	43.6	MWh p.a.
wide)	Est. Cost Savings	\$4.8k	p.a.	-\$8.3k	p.a.
	Payback period	25	years	N/A	years

Reclaim hot water heat pump manifold

Reverse Cycle Air Conditioning

Central: JOV – Solution options

1		Decentralised		Centralised
	Option 1: Solar thermal w/ electric boost hot water & refrigerated space heating / cooling	Option 2: Heat pump hot water & refrigerated space heating / cooling	Option 3: Heat pump hot water & Heat pump radiator space heating	Option 4 : Central heat pump hot water & Central heat pump radiator
DHW solution	10 x ~4kW solar thermal w/ 14.4kW electric boost + 1,200L buffer (TBC)	10 x 15kW heat pump + 1000L buffer	10 x 76kW heat pump + 800L hydronic	2 x 76kW heat pumps + 3 x 2500L tanks
Space heating/cooling technology			heating buffer + 1000L hot water buffer	2 x 150kW heat pumps + 1500L buffer tank
Heating / cooling?	Heating ar	nd Cooling	Heating only	Heating only
Additional electrical kVA demand	342	236	214	138
Available electrical %	-32%	1%	8%	33%
HV Transformer upgrade required?	YPS = 500KVA		No	
LV electrical infrastructure upgrades	New MSB for JOV	/ re-run cables to each cottage + new D	B for each cottage	New MSB for JOV – re-run cables to satellite plant
Plumbing upgrades	Re-do hot water plumb	ing + pull out radiators	Re-do hot water plumbing and hydronic heating / radiator plumbing	Re-do precinct wide hot water and hydronic heating ring mains + cottage level pipework
Staging / timeframe	Upgrade half the cottages initially > undertake transformer upgrade (6- months) > upgrade remaining cottages		– equipment ex stock – heat pump skid ne of 3-4 weeks	Renewal of ring mains and cottage pipework will be time intensive. Equipment ex stock – heat pump skid manufacture time of 3-4 weeks
Budget CAPEX	\$2.8m	\$2.7m	\$2.6m	\$2.3m
Annual OPEX (energy and maintenance)	\$162k n a	\$126k p.a.	\$106k p.a.	\$89k p.a.
Total cost of ownership: 10-year	84 /m	\$4.1m	\$3.9m	\$3.4m
Total cost of ownership: 20-year	\$7.9m	\$7.0m	\$6.1	\$5.5m

Central: Sheila Swain Building

